1、索引介绍

索引(index)是帮助MySQL高效获取数据数据结构(有序)。在数据之外,数据库系统还维护着满足 特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构 上实现高级查找算法,这种数据结构就是索引。

优点:

  • 提高数据检索效率,降低数据库的IO成本
  • 通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗

缺点:

  • 索引列也是要占用空间的
  • 索引大大提高了查询效率,但降低了更新的速度,比如 INSERT、UPDATE、DELETE

2、索引结构

索引结构 描述
B+Tree 最常见的索引类型,大部分引擎都支持B+树索引
Hash 底层数据结构是用哈希表实现,只有精确匹配索引列的查询才有效,不支持范围查询
R-Tree(空间索引) 空间索引是 MyISAM 引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少
Full-Text(全文索引) 是一种通过建立倒排索引,快速匹配文档的方式,类似于 Lucene, Solr, ES
  • 上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持 情况。
索引 InnoDB MyISAM Memory
B+Tree索引 支持 支持 支持
Hash索引 不支持 不支持 支持
R-Tree索引 不支持 支持 不支持
Full-text 5.6版本之后支持 支持 不支持

注意: 我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。

2.1 二叉树

假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:

image

如果主键是顺序插入的,则会形成一个单向链表,结构如下:

image

所以,如果选择二叉树作为索引结构,会存在以下缺点:

  • 顺序插入时,会形成一个链表,查询性能大大降低。
  • 大数据量情况下,层级较深,检索速度慢。

此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数据,最终形成的数据结构也是一颗平衡的二叉树,结构如下:

image

但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:

  • 大数据量情况下,层级较深,检索速度慢。

所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree。

2.2 B-Tree

B-Tree,B树是一种多路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5个指针:

image

树的度数指的是一个节点的子节点个数。

特点:

  • 5阶的B树,每一个节点最多存储4个key,对应5个指针。
  • 一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
  • B树中,非叶子节点和叶子节点都会存放数据

2.3 B+Tree

B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一下其结构示意图:

image

我们可以看到,两部分:

  • 绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
  • 红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。

最终我们看到,B+Tree 与 B-Tree相比,主要有以下三点区别:

  • 所有的数据都会出现在叶子节点
  • 叶子节点形成一个单向链表
  • 非叶子节点仅仅起到索引数据作用具体的数据都是在叶子节点存放的。

上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的B+Tree。

MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。

image

2.4 Hash

MySQL中除了支持B+Tree索引,还支持一种索引类型—-Hash索引。

1.结构

哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。

image

如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。

image

2.特点

  • Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,…)
  • 无法利用索引完成排序操作
  • 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索引

存储引擎支持

在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是 InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。

思考题: 为什么InnoDB存储引擎选择使用B+tree索引结构?

  1. 相对于二叉树,层级更少,搜索效率高;
  2. 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少指针跟着减少,要同样保存大量数据只能增加树的高度,导致性能降低
  3. 相对Hash索引,B+tree支持范围匹配及排序操作;

3、索引的分类

在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。

分类 含义 特点 关键字
主键索引 针对于表中主键创建的索引 默认自动创建,只能有一个 PRIMARY
唯一索引 避免同一个表中某数据列中的值重复 可以有多个 UNIQUE
常规索引 快速定位特定数据 可以有多个
全文索引 全文索引查找的是文本中的关键词,而不是比较索引中的值 可以有多个 FULLTEXT

在 InnoDB 存储引擎中,根据索引的存储形式,又可以分为以下两种:

分类 含义 特点
聚集索引(Clustered Index) 将数据存储与索引放一块,索引结构的叶子节点保存了行数据 必须有,而且只有一个
二级索引(Secondary Index) 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 可以存在多个

聚集索引选取规则:

  • 如果存在主键,主键索引就是聚集索引
  • 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
  • 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索 引。

聚集索引和二级索引的具体结构如下:

演示图:

image

  • 聚集索引的叶子节点下挂的是这一行的数据 。
  • 二级索引的叶子节点下挂的是该字段值对应的主键值。

4、索引语法

1.创建索引

1
CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (index_col_name,... ) ;

2.查看索引

1
SHOW INDEX FROM table_name ;

3.删除索引

1
DROP INDEX index_name ON table_name ;

案例演示:

先来创建一张表 tb_user,并且查询测试数据。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
create table tb_user(
id int primary key auto_increment comment '主键',
name varchar(50) not null comment '用户名',
phone varchar(11) not null comment '手机号',
email varchar(100) comment '邮箱',
profession varchar(11) comment '专业',
age tinyint unsigned comment '年龄',
gender char(1) comment '性别 , 1: 男, 2: 女',
status char(1) comment '状态',
createtime datetime comment '创建时间'
) comment '系统用户表';
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('吕布', '17799990000', 'lvbu666@163.com', '软件工程', 23, '1','6', '2001-02-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('曹操', '17799990001', 'caocao666@qq.com', '通讯工程', 33,'1', '0', '2001-03-05 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('赵云', '17799990002', '17799990@139.com', '英语', 34, '1','2', '2002-03-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('孙悟空', '17799990003', '17799990@sina.com', '工程造价', 54,'1', '0', '2001-07-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('花木兰', '17799990004', '19980729@sina.com', '软件工程', 23,'2', '1', '2001-04-22 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('大乔', '17799990005', 'daqiao666@sina.com', '舞蹈', 22, '2','0', '2001-02-07 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('露娜', '17799990006', 'luna_love@sina.com', '应用数学', 24,'2', '0', '2001-02-08 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('程咬金', '17799990007', 'chengyaojin@163.com', '化工', 38,'1', '5', '2001-05-23 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('项羽', '17799990008', 'xiaoyu666@qq.com', '金属材料', 43,'1', '0', '2001-09-18 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('白起', '17799990009', 'baiqi666@sina.com', '机械工程及其自动化', 27, '1', '2', '2001-08-16 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('韩信', '17799990010', 'hanxin520@163.com', '无机非金属材料工程', 27, '1', '0', '2001-06-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('荆轲', '17799990011', 'jingke123@163.com', '会计', 29, '1','0', '2001-05-11 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('兰陵王', '17799990012', 'lanlinwang666@126.com', '工程造价',44, '1', '1', '2001-04-09 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('狂铁', '17799990013', 'kuangtie@sina.com', '应用数学', 43,'1', '2', '2001-04-10 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('貂蝉', '17799990014', '84958948374@qq.com', '软件工程', 40,'2', '3', '2001-02-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('妲己', '17799990015', '2783238293@qq.com', '软件工程', 31,'2', '0', '2001-01-30 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('芈月', '17799990016', 'xiaomin2001@sina.com', '工业经济', 35,'2', '0', '2000-05-03 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('嬴政', '17799990017', '8839434342@qq.com', '化工', 38, '1','1', '2001-08-08 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('狄仁杰', '17799990018', 'jujiamlm8166@163.com', '国际贸易',30, '1', '0', '2007-03-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('安琪拉', '17799990019', 'jdodm1h@126.com', '城市规划', 51,'2', '0', '2001-08-15 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('典韦', '17799990020', 'ycaunanjian@163.com', '城市规划', 52,'1', '2', '2000-04-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('廉颇', '17799990021', 'lianpo321@126.com', '土木工程', 19,'1', '3', '2002-07-18 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('后羿', '17799990022', 'altycj2000@139.com', '城市园林', 20,'1', '0', '2002-03-10 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('姜子牙', '17799990023', '37483844@qq.com', '工程造价', 29,'1', '4', '2003-05-26 00:00:00');

表结构中插入的数据如下:

image

数据准备好了之后,接下来,我们就来完成如下需求:

​ name字段为姓名字段,该字段的值可能会重复,为该字段创建索引。

1
CREATE INDEX idx_user_name ON tb_user(name);

​ phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。

1
CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);

​ 为profession、age、status创建联合索引。

1
CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status);

​ 为email建立合适的索引来提升查询效率

1
CREATE INDEX idx_email ON tb_user(email);

完成上述的需求之后,我们再查看tb_user表的所有的索引数据。

1
show index from tb_user;

image

5、索引使用

5.1 验证索引效率

在讲解索引的使用原则之前,先通过一个简单的案例,来验证一下索引,看看是否能够通过索引来提升数据查询性能。在演示的时候,我们还是使用之前准备的一张表 tb_sku , 在这张表中准备了1000w的记录。

这张表中id为主键,有主键索引,而其他字段是没有建立索引的。 我们先来查询其中的一条记录,看 看里面的字段情况,执行如下SQL:

1
select * from tb_sku here id = 1\G;

image

可以看到即使有1000w的数据,根据id进行数据查询,性能依然很快,因为主键id是有索引的。 那么接下来,我们再来根据 sn 字段进行查询,执行如下SQL:

1
SELECT * FROM tb_sku WHERE sn = '100000003145001';

image

我们可以看到根据sn字段进行查询,查询返回了一条数据,结果耗时 20.78sec,就是因为sn没有索引,而造成查询效率很低。

那么我们可以针对于sn字段,建立一个索引,建立了索引之后,我们再次根据sn进行查询,再来看一下查询耗时情况。

创建索引:

1
create index idx_sku_sn on tb_sku(sn) ;

image

然后再次执行相同的SQL语句,再次查看SQL的耗时。

1
SELECT * FROM tb_sku WHERE sn = '100000003145001';

image

我们明显会看到,sn字段建立了索引之后,查询性能大大提升。建立索引前后,查询耗时都不是一个数量级的。

5.2 最左前缀法则

如果索引关联了多列(联合索引),要遵守最左前缀法则,最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将部分失效(后面的字段索引失效)。

以 tb_user 表为例,我们先来查看一下之前 tb_user 表所创建的索引。

1
2
3
4
5
6
7
8
9
10
11
12
13
mysql> show index from tb_user;
+---------+------------+----------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+---------+------------+----------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
| tb_user | 0 | PRIMARY | 1 | id | A | 23 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 0 | idx_user_phone | 1 | phone | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_name | 1 | name | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 1 | profession | A | 16 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 2 | age | A | 22 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 3 | status | A | 24 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_email | 1 | email | A | 24 | NULL | NULL | YES | BTREE | | | YES | NULL |
+---------+------------+----------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
7 rows in set (0.00 sec)

在 tb_user 表中,有一个联合索引,这个联合索引涉及到三个字段,顺序分别为:profession,age,status。

对于最左前缀法则指的是,查询时,最左变的列,也就是profession必须存在,否则索引全部失效。而且中间不能跳过某一列,否则该列后面的字段索引将失效。 接下来,我们来演示几组案例,看一下具体的执行计划:

1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------------------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------------------+------+----------+-----------------------+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 54 | const,const,const | 1 | 100.00 | Using index condition |
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------------------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)
1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = '软件工程' and age = 31;
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------------+------+----------+-------+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 49 | const,const | 1 | 100.00 | NULL |
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)
1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = '软件工程';
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------+------+----------+-------+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 47 | const | 4 | 100.00 | NULL |
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)

以上的这三组测试中,我们发现只要联合索引最左边的字段 profession存在,索引就会生效,只不过索引的长度不同。 而且由以上三组测试,我们也可以推测出profession字段索引长度为47、age字段索引长度为2、status字段索引长度为5。

1
2
3
4
5
6
7
mysql> explain select * from tb_user where age = 31 and status = '0';
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 24 | 4.17 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
1
2
3
4
5
6
7
mysql> explain select * from tb_user where status = '0';
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+--------+-------------+
| 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 24 | 10.00 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

而通过上面的这两组测试,我们也可以看到索引并未生效,原因是因为不满足最左前缀法则,联合索引最左边的列profession不存在。

1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = '软件工程' and status = '0';
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------+------+----------+-----------------------+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 47 | const | 4 | 10.00 | Using index condition |
+----+-------------+---------+------------+------+----------------------+----------------------+---------+-------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

上述的SQL查询时,存在profession字段,最左边的列是存在的,索引满足最左前缀法则的基本条件。但是查询时,跳过了age这个列,所以后面的列索引是不会使用的,也就是索引部分生效,所以索引的长度就是47。

5.3 范围查询

联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效。

1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = '软件工程' and age > 30 and status = '0';
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
| 1 | SIMPLE | tb_user | NULL | range | idx_user_pro_age_sta | idx_user_pro_age_sta | 49 | NULL | 2 | 10.00 | Using index condition |
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

当范围查询使用> 或 < 时,走联合索引了,但是索引的长度为49,就说明范围查询右边的status字段是没有走索引的。

1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = '软件工程' and age >= 30 and status = '0';
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
| 1 | SIMPLE | tb_user | NULL | range | idx_user_pro_age_sta | idx_user_pro_age_sta | 54 | NULL | 2 | 10.00 | Using index condition |
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

当范围查询使用>= 或 <= 时,走联合索引了,但是索引的长度为54,就说明所有的字段都是走索引的。

所以,在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <

5.4 索引失效情况

索引列运算

不要在索引列上进行运算操作, 索引将失效。

在tb_user表中,除了前面介绍的联合索引之外,还有一个索引,是phone字段的单列索引。

1
2
3
4
5
6
7
8
9
10
11
12
13
mysql> show index from tb_user;
+---------+------------+----------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+---------+------------+----------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
| tb_user | 0 | PRIMARY | 1 | id | A | 23 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 0 | idx_user_phone | 1 | phone | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_name | 1 | name | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 1 | profession | A | 16 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 2 | age | A | 22 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 3 | status | A | 24 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_email | 1 | email | A | 24 | NULL | NULL | YES | BTREE | | | YES | NULL |
+---------+------------+----------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
7 rows in set (0.00 sec)
  1. 当根据phone字段进行等值匹配查询时, 索引生效。
1
2
3
4
5
6
7
mysql> explain select * from tb_user where phone = '17799990015';
+----+-------------+---------+------------+-------+----------------+----------------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+----------------+----------------+---------+-------+------+----------+-------+
| 1 | SIMPLE | tb_user | NULL | const | idx_user_phone | idx_user_phone | 46 | const | 1 | 100.00 | NULL |
+----+-------------+---------+------------+-------+----------------+----------------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)
  1. 当根据phone字段进行函数运算操作之后,索引失效。
1
2
3
4
5
6
7
mysql> explain select * from tb_user where substring(phone,10,2) = '15';
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 24 | 100.00 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

字符串不加引号

字符串类型字段使用时,不加引号,索引将失效。

接下来,我们通过两组示例,来看看对于字符串类型的字段,加单引号与不加单引号的区别:

1
2
explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
explain select * from tb_user where profession = '软件工程' and age = 31 and status = 0;
1
2
explain select * from tb_user where phone = '17799990015';
explain select * from tb_user where phone = 17799990015;

经过上面两组示例,我们会明显的发现,如果字符串不加单引号,对于查询结果,没什么影响,但是数据库存在隐式类型转换,索引将失效。

模糊查询

如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。

接下来,我们来看一下这三条SQL语句的执行效果,查看一下其执行计划:

由于下面查询语句中,都是根据profession字段查询,符合最左前缀法则,联合索引是可以生效的,

我们主要看一下,模糊查询时,%加在关键字之前,和加在关键字之后的影响。

1
2
3
explain select * from tb_user where profession like '软件%';
explain select * from tb_user where profession like '%工程';
explain select * from tb_user where profession like '%工%';

经过上述的测试,我们发现,在like模糊查询中,在关键字后面加%,索引可以生效。而如果在关键字前面加了%,索引将会失效。

or连接条件

用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。

1
2
explain select * from tb_user where id = 10 or age = 23;
explain select * from tb_user where phone = '17799990017' or age = 23;

由于age没有索引,所以即使id、phone有索引,索引也会失效。所以需要针对于age也要建立索引。

然后,我们可以对age字段建立索引。

1
create index idx_user_age on tb_user(age);

建立了索引之后,我们再次执行上述的SQL语句,看看前后执行计划的变化。

最终,我们发现,当or连接的条件,左右两侧字段都有索引时,索引才会生效。

数据分布影响

如果MySQL评估使用索引比全表更慢,则不使用索引。

1
2
select * from tb_user where phone >= '17799990005';
select * from tb_user where phone >= '17799990015';

经过测试我们发现,相同的SQL语句,只是传入的字段值不同,最终的执行计划也完全不一样,这是为什么呢?

就是因为MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如走全表扫描来的快,此时索引就会失效。

6、索引设计原则

  1. 针对于数据量较大,且查询比较频繁的表建立索引。
  2. 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。
  3. 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
  4. 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
  5. 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
  6. 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
  7. 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。